

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P74320A

Publications Code WST01_01_rms_20240307

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation. To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working
- awrt means answers which round to

- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme					
1 (a)	$2\times36=$	$72 8 \times 4 = 32$	M1 A1			
			(2)			
(b)	$[13] + \frac{(26)^{-1}}{2}$	$\frac{04-184)}{120} \times 2 \qquad \qquad \boxed{[13] + \frac{(204.5-184)}{120}} \times 2$	M1			
		$=\frac{40}{3}$ = awrt 13.3	A1			
			(2)			
(c)	Symmetr	rically distributed/No skew as the mean ≈ median	B1 (1)			
	22	120	(1)			
(d)	•	$+\frac{120}{2}[=220]$	M1			
	'220' × '		M1			
	$\frac{365}{1258}$ or	awrt 0.29 awrt 0.29	A1			
			(3)			
		Notes	Total 8			
(a)	M1 For any equivalent method to find either frequency Maybe implied by either correct frequency Also maybe implied by two frequencies which add to 104 Also maybe implied by a correct scale on the fd axis, at least 3 labels					
	A1	For 72 and 32				
(b)	For any equivalent method to find the median e.g. $\frac{Q_2 - 13}{15 - 13} = \frac{204 - 184}{304 - 184}$ or $\frac{15 - Q_2}{Q_2 - 13} = \frac{304 - 204}{204 - 184}$ allow working downwards [15] $-\frac{(304 - 204)}{120} \times 2$					
	A1	awrt 13.3				
(c)	For a correct identification of skew [which must either be symmetric/no skew or (slight) negative skew] with a correct supporting reason. Condone mean < median so negative skew Allow use of 'their median' in the comparison provided 'their median' 13.2 Allow Q ₁ = awrt 10.8 or awrt 10.9 and Q ₃ = awrt 15.1 and Q ₂ - Q ₁ > Q ₃ - Q ₂ so negative skew. Comments referring only to the diagram (being symmetrical therefore no skew) send to review					
(d)	M1	For a correct method to find the number of plants between 8cm and 14cm (may be sight of 220)				
	M1	For $\frac{n}{408} \times \frac{n-1}{407}$ or $\left(\frac{n}{408}\right)^2$ with 210 ,, n ,, 230				
	A1	awrt 0.29 may see $\frac{3025}{10404}$ from $\left(\frac{220}{408}\right)^2$				

Question Number	Scheme							
2 (a)(i)	Mean = 7	Mean = 71.83 awrt 71.8						
(ii)	Standard	Standard deviation = $\sqrt{\frac{62802}{12} - \left(\frac{862}{12}\right)^2}$ or variance = $\frac{62802}{12} - \left(\frac{862}{12}\right)^2$						
	$\sqrt{73.47} = 8.571$ 8.57 * (to 3s.f.)							
(b)		$S_{xx} = 62802 - \frac{862^2}{12} \left[= \frac{2645}{3} = 881.66 \right]$						
	$r = \frac{1}{\sqrt{413}}$	512.67 .67×'881.66'	M1					
	= 0.8489		A1					
				(3)				
(c)		$\frac{5}{9}$ × ('71.8'-32)	M1					
	= 22.11.		A1ft					
	Standard	$deviation = \frac{5}{9} \times 8.57$	M1					
	= 4.76	awrt 4.76	A1					
(1)			7.54	(4)				
(d)		3489' / same (as for x and y)	M1					
	r not arre	ected by (linear) coding oe	A1	(2)				
		Notes	Total	` /				
(a)(i)	B1	awrt 71.8 Allow $\frac{431}{6}$ oe						
		A correct method to find the standard deviation or the variance — ft their mean for M	I1 only					
(ii)	M1	Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$						
	A1*	Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s.f.) A1* $\sqrt{\frac{62802}{12}}_{-71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0). To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12}}_{-71.833^2}$						
(b)	M1	M1 A correct method to find S_{xx} (implied by awrt 882)						
	M1	A correct method to find PMCC using their value of S_{xx}						
	A1	awrt 0.849						
(c)	M1	M1 A correct method to find the mean ft their mean in part (a)						
	A1ft	awrt 22.1 ft their mean in part (a)						
	М1	A correct method to find the standard deviation						
	M1 (do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)							
	A1	awrt 4.76						
(d)	M1 $r = \text{their part (b) provided } -1$, their part (b), 1 allow 2 s.f. on the ft							
	A1	Any correct reasoning but M1 must be scored						

Question Number		Scheme	Marks			
3 (a)	$1-p$, $\frac{7}{8}$ and $\frac{9}{10}$ in the correct place on tree diagram					
			(1)			
(b)	$\frac{1}{8}p + \frac{1}{10}(1-p) = 0.11$					
	$p = \frac{2}{5}$		A1			
			(3)			
(c)	$\frac{2}{5} \times \frac{1}{8} =$	$\frac{1}{20}$	M1 A1ft			
			(2)			
(d)		$R) = \frac{\frac{2}{5} \times \frac{7}{8}}{1 - 0.11} \text{or } P(Y12 \mid R) = \frac{\frac{2}{5} \times \frac{7}{8}}{\frac{2}{5} \times \frac{7}{8} + \frac{3}{5} \times \frac{9}{10}}$	M1			
	$=\frac{35}{89}$		A1			
			(2)			
		Notes	Total 8			
(a)	B1	For a fully correct tree diagram with all 3 correct labels. Allow if $1-p$ is seen and crossed out/replaced with a numerical probability.				
(b)	M1	For $\frac{1}{8}p$ or $\frac{1}{10}$ ' $(1-p)$ ' seen in an equation for p				
	A1ft	For a fully correct equation in p or correct ft equation based on their tree diagram				
	A1	oe correct answer scores 3 out of 3				
(c)	M1	For $p \times \frac{1}{8}$ ft their p, provided p is a probability				
	A1ft	For a correct answer ft their <i>p</i> , provided <i>p</i> is a probability. Correct answer scores 2 out of 2				
(d)	M1	For a correct ratio of probabilities. Can ft their <i>p</i> , provided <i>p</i> is a probability				
	A1	For $\frac{35}{89}$ (Allow awrt 0.393)				

Question Number		Scheme	Marks		
4 (a)	LQ = 28 or $UQ = 48$				
	'48'+1.5('48'-'28')[= 78]				
		so, 90 is an outlier*	A1*		
	707 70		(3)		
(b)	$b = \frac{1733}{1667}$	$\frac{5.6}{7.6}$ [=1.04]	M1		
	a = 38.2 - b'(42.2)[= -5.72]				
		2+1.04 f *	M1 A1*		
			(3)		
(c)	For ever	ry extra mark (oe) in French/f, Spanish/s goes up (oe) by [on average] 1.04	B1		
			(1)		
(d) (i)		$5.72 + 1.04 \times 55 = 51.48$ awrt 51.5	M1 A1		
(ii)	s = -5	$5.72 + 1.04 \times 18 = 13$	A1		
			(3)		
(e)	 The first estimate is an interpolation/The second estimate is an extrapolation 55 is within the range of data/18 is not within the range of data 55 is closer to the mean/18 is further away from the mean 				
	so 51.5 is the more reliable estimate				
		Notes	(2) Total 12		
(a)	B1	For either LQ or UQ correct (may be seen in calculation for M1)	10tal 12		
(u)	M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the	heir LO		
	A1*	For both LQ and UQ correct and identifying 90>78 or 90 is an outlier Answer is given so no incorrect working can be seen			
(b)	M1	For a correct method to find the gradient			
	M1	For a correct method to find the intercept (division by 11 is M0)			
	A1*	Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$			
()		For a correct numerical interpretation of the gradient in context which must include	marks at		
(c)	B1	least once			
(d) (i)	M1	For a correct substitution into the regression equation. May be seen in (i) or (ii) or implied by one correct answer			
	A1	awrt 51.5 Allow 51 or 52			
(ii)	A1	13 or awrt 13.0			
(e)	For any equivalent correct reason Ignore extraneous non-contradictory comments For the second bullet point must be clear that they are referring to French marks (24,, f,, 68). Do not allow comments that refer to the range of Spanish marks e.g. "51.5' is within the range of data/13' is not within the range of data'				
<u> </u>		Do not allow '55 is closer to the median (than 18)'			
	A1	For clearly identifying the estimate from part (d)(i): 51.5 or 55 or (i) or 'the first esti	mata, ata		

Question Number		Scheme					
5 (a)	P(X < 3)	$(38.8) = P\left(Z < \frac{38.8 - 40}{4}\right) \left[= P\left((Z < -0.3)\right) \right]$	M1				
	=1-0.6179 = 0.3821*						
			(2)				
(b)	P(Qualit	fy) = $1 - (0.3821)^3$ or $1 - 0.3821 + 0.3821 \times (1 - 0.3821) + 0.3821^2 \times (1 - 0.3821)$	M1				
		[=0.9442]					
	$P(X > 44) = P\left(Z > \frac{44 - 40}{4}\right) \left[= P\left((Z > 1)\right)\right]$						
	[=1-0.8413]=0.1587						
	$P(X > 44 \text{ on 2nd attempt} Qualify}) = \frac{0.3821 \times '0.1587'}{'0.9442'}$						
	0.06422 awrt 0.0642						
	Notes						
(a)	M1	For standardising using 38.8, 40 and 4 (allow \pm)					
	A1*	Must see 1 – 0.6179 or we must see 0.38209 or 0.38208 or better Answer is given so no incorrect working can be seen (but condone poor probability notation)					
(b)	M1	For a correct method to find the probability of qualifying	,				
	M1 For standardising using 44, 40 and 4 (implied by $1 - 0.8413$ or awrt 0.1587)						
	A1						
	M1 For a correct ratio of probabilities ft their 0.1587 and their 0.9442. Use of 0.6179 in the denominator is M0						
	A1	awrt 0.0642					

Question Number		Scheme		Marks		
6 (a)	P(B A) =	$=\frac{P(B\cap A)}{P(A)}$				
	$0.3 = \frac{P}{}$	$\frac{(B \cap A)}{x} \Rightarrow P(B \cap A) = 0$	0.3x	M1		
	$P(A \cup B)$	$= P(A) + P(B) - P(A \cap B)$	1	M1		
	0.65 = x	$+ y - 0.3x \Longrightarrow 0.65 = 0.7x + y$,			
	14x + 20	0y = 13 *		A1*		
	D/D G	() D(D) D(C) D(D	0.0	(3)		
(b)(i)		$P(B) + P(C)$ or $P(B \cap C)$	$\Delta C = 0$	M1		
	$0.85 = \frac{1}{2}$	x+2y		A1		
(ii)	Attempt	to solve the 2 equations sim	ultaneously	M1		
	x = 0.5	y = 0.3		A1		
				(4)		
	P(B A) = 0.3 and		$P(A) \times P(B) = '0.5' \times '0.3'$ and			
(c)	$P(B A) = 0.3$ and $P(A \cap B) = 0.3 \times '0.5'$ or $P(A \cap B) = '0.5' + '0.3' - 0.65$			M1		
		A1ft				
	So, A and B are statistically independent					
			Notes	(2) Total 9		
(a)	Use of $P(B A) = \frac{P(B \cap A)}{P(A)}$ assuming independence is M0 e.g. $P(B \cap A) = P(B) \times P(A) = xy$					
			x = 0.3x (may be seen on a Venn diagram)			
	M1					
	A 1 *	0.65 = x + y - 0.3x implies M1M1 Answer is given so no incorrect working can be seen				
(b)(i)	A1* M1		P(C) or sight of $P(B \cap C) = 0$			
(b)(i)	A1					
<i>(</i> ::\		Any correct second equation in <i>x</i> and <i>y</i> which need not be simplified. Attempt to solve the 2 equations simultaneously. Either a correct substitution seen or a correct				
(ii)	M1	method to eliminate <i>x</i> or <i>y</i>				
	A1	For $x = 0.5$ and $y = 0.3$				
		For finding all of the probability labelled) ft their values of x	ilities needed for a test for independence (probabilities and v	must be		
(c)	M1 Refer values of x and y $P(B A)$ and $P(B)$ or $P(A), P(B)$ and $P(A \cap B)$					
	For $P(A \cap B)$ we must see working shown					
	A1ft For a correct ft conclusion for their values of x and y (must have scored M1)					
			(

Question Number	Scheme						Marks	
	$\frac{k+4}{8} = 1 [k=4*]$						B1*	
							(1)	
(b)	$\mathbf{P}(X=x)$	$\frac{1}{x} \qquad \frac{1}{13}$	$\frac{2}{\frac{7}{26} - \frac{1}{13}} = \frac{5}{26}$	$\frac{15}{26} - \frac{7}{26} = \frac{4}{13}$	$4 \\ 1 - \frac{15}{26} = \frac{11}{26}$		M1 M1 A1	
(a)	1						(3)	
(c)	4						B1ft	
							(1)	
(d)	$E(X) = 1 \times \frac{1}{2}$	$\frac{1}{13} + 2 \times \frac{5}{26} + 3 \times \frac{4}{13}$	$\frac{11}{26} = \frac{40}{13}$	Y $P(Y = y)$	$ \begin{array}{c cccc} 7 & 20 \\ \hline & 5 \\ \hline & 26 \\ \end{array} $	$ \begin{array}{c cccc} & 33 & 46 \\ \hline & 4 & 11 \\ \hline & 13 & 26 \\ \end{array} $	M1	
	$E(X^2) = 1^2$	$\times \frac{1}{13} + 2^2 \times \frac{5}{26} + 3^2 \times \frac{1}{26} \times \frac{1}{2$	$\frac{4}{13} + 4^2 \times \frac{11}{26} = \frac{13}{13}$	$E(Y) = 7 \times \frac{1}{13} + \frac{1}{13}$	$20 \times \frac{5}{26} + 33 \times \frac{4}{13}$	$\frac{1}{3}$ '+ 46×' $\frac{11}{26}$ '[= 34]	M1	
	$Var(X) = \frac{135}{13} - \left(\frac{40}{13}\right)^2 = \frac{155}{169}$ $E(Y^2) = 7^2 \times \frac{1}{13} + 20^2 \times \frac{5}{26} + 33^2 \times \frac{4}{13} + 46^2 \times \frac{11}{26}$ $= 1311$						M1	
	Var(13 <i>X</i>	$-6) = 13^2 \times '\frac{155}{169}$	<u>5</u> ,	Var(13X - 6)	5) = '1311'- '34	4' ²	M1	
	= 155 A							
	Notes '							
(a)	B1*	$\frac{k+4}{8} = 1 \text{ oe}$	Allow verification		1 provided they	y conclude $k = 4$	Total 10	
(b)	M1	For a correct met	hod to find one pro			ļ.		
			one correct probabine to find a secon			$r-\Delta$		
	M1	(implied by any t	wo correct probabi	lities from $x = 2$,				
	A1		t probability distril table, but 1, 2, 3 an		riated with corre	et probability		
(c)	R1f4	Must be consister	nt with the highest	probability in the				
(c)	B1ft If no distribution is found, then the answer must be 4 For a correct method to find $E(X)$ (implied by awrt 3.08) ft their table use of $\sum xF(x)$ is M0							
(d)	M1		nod to find E(X) (i robability distributi	•			i) IS IVIU	
	M1	For a correct met	hod to find $E(X^2)$ ethod to find $E(Y)$	(implied by awrt 1	•		(x) is M0	
	M1		$E(X)^2$ ft their $E(X)$		or			
	for a correct method to find $E(Y^2)$ ft their table							
	M1	Use of $13^2 \text{Var}(X)$						
	or use of $E(Y^2) - E(Y)^2$ ft their $E(Y^2)$ and their $E(Y)$							
	A1	Cao						

Question Number		So	cheme		Marks			
Tumber	P(X > x)	(u+2k) = 0.2	or	$P(X < \mu - 2k) = 0.2$				
8 (a)	`	$(\mu + 2k) = 0.2$	or	$P(X > \mu - 2k) = 0.2$ $P(X > \mu - 2k) = 0.8$	M1			
	$\frac{\mu+2k-6}{6}$	$\frac{\mu}{}$ = 0.8416	or	$\frac{\mu - 2k - \mu}{6} = -0.8416$	M1 A1			
	k = 2.52			awrt 2.:	52 A1			
					(4)			
(b)	$P\left(Y > \frac{3}{2}A\right)$	$ P\left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma}\right) \Rightarrow P\left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma}\right) $	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sigma}\right)$		M1			
		$\Rightarrow P\left(Z > \frac{\frac{1}{2}\left(\frac{3}{2}\sigma^2\right)}{\sigma}\right)$	$\left[= P\left(Z > \frac{3}{4}\sigma\right) \right]$					
	or $\sigma = \sqrt{\frac{2\mu}{3}} \Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sqrt{\frac{2\mu}{3}}}\right) = \left[P\left(Z > \frac{1}{2}\sqrt{\frac{3\mu}{2}}\right)\right]$							
	O	= k and $2\mu = 3\sigma^2$ 1.5 or $\frac{1}{2}\sqrt{\frac{3\mu}{2}} = 1.5$ or $3\sigma^2 = 6\sigma$						
	$\frac{-\sigma}{4}$	$3 \text{ or } \frac{1}{2}\sqrt{\frac{1}{2}} = 1.3 \text{ or } \frac{1}{2}$	30 = 00		M1			
	$\mu = 6$ onl	y, $\sigma = 2$ only			A1 A1			
					(5)			
			Notes		Total 9			
(a)	M1	For any of the given to Also may be implied		ements which may be seen on a diagram				
		For standardising using	μ and 6 and set	ting = to z value, where $0.8 < z < 0.9$				
	M1 Implied by $(\pm)\frac{k}{3} = (\pm)0.84$ or better							
	A1							
	A1	awrt 2.52 (Allow 2.52	25) Answer only 2	.52 is M1M1A0A1 Answer only 2.5248	3 is M1M1A1A1			
(b)	M1	For standardising using	2	•				
	M1	For substitution of μ	$=\frac{3}{2}\sigma^2$ into their s	tandardisation or setting up two equation	ns in μ and σ			
	M1	For their expression f	For σ only or μ or	nly used with ±1.5				
	A1	$\mu = 6 \text{ or } \sigma = 2$						
	A1	$\mu = 6$ and $\sigma = 2$ m	ust reject any other	values if found				